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Abstract

We determine under which conditions the induced representation of the form
δ1× δ2oσ, where δ1, δ2 are irreducible essentially square integrable represen-
tations of a general linear group and σ is a discrete series representation of
classical p-adic group, contains an irreducible strongly positive subquotient.
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1. Introduction

According to the Mœglin-Tadić classification, which now holds uncondi-
tionally due to recent work of Arthur [1] and Mœglin [14], discrete series of
classical groups over p-adic fields arise in the natural and inductive way from
strongly positive representations. Such representations, which serve as basic
building blocks in construction of square-integrable and tempered representa-
tions, have been introduced in [13], as a class of discrete series corresponding
to the so-called admissible triples of alternated type. An algebraic classifi-
cation of strongly positive discrete series of metaplectic groups, which also
holds in the classical group case, is given in [6]. Some further properties of
strongly positive discrete series have been studied in [7] and [9]. We note
that the class of strongly positive discrete series contains some prominent
parts of the unitary dual, such as the generalized Steinberg representations,
regular discrete series representations and discrete series representations ob-
tained by theta-correspondence from the supercuspidal ones (details can be
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seen in [17] for the symplectic - even orthogonal dual pair and in [7, 8] for
the metaplectic - odd orthogonal dual pair).

In this paper we are interested in determining when the induced repre-
sentation of the form δ1 × δ2 o σ contains an irreducible strongly positive
subquotient, where δ1, δ2 denote irreducible essentially square integrable rep-
resentations of the general linear group and σ stands for a discrete series
representation of the classical p-adic group. This problem presents an initial
step towards the determination of composition series of the induced repre-
sentation δ1× δ2oσ, for δ1, δ2 and σ as above, which should have important
applications in the classification of the unitary dual of classical p-adic group.
Also, it can be viewed as an extension of the description of strongly positive
subquotients of generalized principal series, which is implicitly given in [16].

If δ1 × δ2 o σ contains a strongly positive subquotient, then σ is also
strongly positive and there is some irreducible subquotient π of δ2oσ (which
is either strongly positive or non-tempered) such that δ1 o π contains a
strongly positive representation. For strongly positive π, complete composi-
tion series of generalized principal series δ o π have been described by Muić
([16]), so our aim is to obtain necessary and sufficient conditions under which
the induced representation δ1 o L(δ2 o σ) contains an irreducible strongly
positive subquotient, where L(δ2 o σ) stands for the Langlands quotient of
δ2 o σ.

To obtain the necessary conditions, we use the Jacquet modules method
and description of Jacquet modules of strongly positive representations from
[9] (which is also given in Section 7 of [12], using a different approach based
on results of [5]). Also, we use results from [16], which enable us to obtain
deeper knowledge on the structure of Jacquet modules of the non-tempered
representation L(δ2 o σ).

It is worth pointing out that non-supercuspidal discrete series naturally
appear as subquotients of generalized principal series. In majority of cases,
this enables one to realize a discrete series as an irreducible subquotient of
the induced representation of the form δ1 o (δ2 o σ), where δ2 o σ is irre-
ducible. Our results also produce interesting examples of strongly positive
discrete series which appear as subquotients of the induced representations
of the form δ1 o L(δ2 o σ), where δ2 o σ reduces. To prove that an induced
representation of this type contains the strongly positive subquotient σsp, we
find an irreducible tempered representation τ whose Jacquet module with re-
spect to the appropriate standard parabolic subgroup contains an irreducible
subquotient of the form δ ⊗ σsp. Then we write τ as a subquotient of the
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larger representation and, by calculating its Jacquet modules, obtain the in-
duced representation of the form δ1 o (δ2 o σ) containing σsp. Using results
of [16], together with the detailed analysis of Jacquet modules of σsp and
δ2 o σ, we determine the irreducible subquotient π of δ2 o σ such that σsp is
contained in δ1 o π.

We will now describe the contents of the paper in more details.
In the following section we set up the notation and terminology. In the

third section we prove some technical results which reduce our investigation
to induced representations of the form δ([νaρ, νbρ]) o L(δ([νcρ, νdρ]) o σ),
with both a and c positive and a ̸= c. In the same section, we also state our
main results. Section 4 provides a detailed analysis of the case a > 1

2
and

c > 1
2
. Section 5 discusses the case a = 1

2
, while Section 6 deals with the

remaining case c = 1
2
.

The author would like to thank the referee for a number of corrections
and very useful suggestions.

This work has been supported in part by Croatian Science Foundation
under the project 9364.

2. Preliminaries

Let F denote a nonarchimedean local field of characteristic different than
2. The groups we are considering are of the following form: we have a tower
of symplectic or (full) orthogonal groups Gn = G(Vn), which are the groups
of isometries of F -vector spaces Vn endowed with the non-degenerate form
which is skew-symmetric if the tower is symplectic and symmetric otherwise.
Here n stands for the split rank of the group Gn, n ≥ 0.

The set of standard parabolic subgroups will be fixed in a usual way, i.e.,
we fix a minimal F -parabolic subgroup in Gn consisting of upper-triangular
matrices in the usual matrix realization of the classical group. Then the Levi
factors of standard parabolic subgroups have the form M = GL(n1, F ) ×
· · · × GL(nk, F ) × Gn′ , where GL(m,F ) denotes a general linear group of
rank m over F . If δi, i = 1, 2, . . . , k, is a representation of GL(ni, F ) and
τ a representation of Gm, then we denote by δ1 × · · · × δk o τ the normal-
ized parabolically induced representation of the group Gn, induced from the
representation δ1 ⊗ · · · ⊗ δk ⊗ τ of the standard parabolic subgroup with the
Levi subgroup equal to GL(n1, F ) × · · · × GL(nk, F ) × Gm. Here n equals
n1 + n2 + · · ·+ nk +m.
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Let Rn denote the Grothendieck group of admissible representations of
finite length of GL(n, F ) and define R = ⊕n≥0Rn. Similarly, let Sn stand for
the Grothendieck group of admissible representations of finite length of Gn

and define S = ⊕n≥0Sn.
We will denote by ν a composition of the determinant mapping with the

normalized absolute value on F . Let ρ denote an irreducible cuspidal unitary
representation of GL(k, F ). By a segment of cuspidal representations, which
will be denoted by [ρ, νmρ], we mean the set {ρ, νρ, . . . , νmρ}. To each such
segment we attach an irreducible essentially square-integrable representation
δ([ρ, νmρ]) of GL(m ·k, F ), which is the unique irreducible subrepresentation
of νmρ× · · · × νρ× ρ (here we use a well known notation for the normalized
parabolic induction for the general linear groups with the usual choice of the
standard parabolic subgroups). For integers x, y, x ≤ y, we set [x, y] = {z ∈
Z : x ≤ z ≤ y}.

Let δi, i = 1, 2, . . . , k be square-integrable representations of GL(ni, F ),
τ an irreducible tempered representation of the group Gm, and s1, s2, . . . , sk
real numbers such that s1 ≥ s2 ≥ · · · ≥ sk > 0. Then the induced represen-
tation νs1δ1×· · ·×νskδkoτ has a unique irreducible quotient, which is called
the Langlands quotient and will be denoted by L(νs1δ1 × · · · × νskδk o τ).

For representation σ of Gn and 1 ≤ k ≤ n we denote by r(k)(σ) the
normalized Jacquet module of σ with respect to the parabolic subgroup P(k)

having Levi subgroup equal to GL(k, F )×Gn−k. We identify r(k)(σ) with its
semisimplification in Rk ⊗ Sn−k and consider

µ∗(σ) = 1⊗ σ +
n∑

k=1

r(k)(σ) ∈ R⊗ S.

We take a moment to state the crucial structural formula for our calcula-
tions of Jacquet modules ([18]), which is a version of the Geometrical lemma
by Bernstein and Zelevinsky ([2]).

Lemma 2.1. Let ρ be an irreducible cuspidal representation of GL(m,F )
and k, l ∈ R be such that k + l ∈ Z≥0. Let σ be an admissible representation
of finite length of Gn. Write µ∗(σ) =

∑
τ,σ′ τ ⊗ σ′. Then the following holds:

µ∗(δ([ν−kρ, ν lρ])o σ) =
l∑

i=−k−1

l∑
j=i

∑
τ,σ′

δ([ν−iρ̃, νkρ̃])× δ([νj+1ρ, ν lρ])× τ⊗

⊗ δ([νi+1ρ, νjρ])o σ′.
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We omit δ([νxρ, νyρ]) if x > y.

An irreducible representation σ ∈ S is called strongly positive if for every
embedding

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk o σcusp,

where ρi ∈ R, i = 1, 2, . . . , k, are irreducible cuspidal unitary representations
and σcusp ∈ S is an irreducible cuspidal representation, we have si > 0 for
i = 1, 2, . . . , k.

Obviously, every strongly positive representation is square–integrable. Ir-
reducible strongly positive representations are called strongly positive dis-
crete series.

In this paper we will be concerned only with the non-supercuspidal strongly
positive representations. Let us briefly recall an inductive description of non-
supercuspidal strongly positive discrete series, which has been obtained in [6].

Proposition 2.2. Suppose that σ ∈ Sn is an irreducible strongly positive rep-
resentation and let ρ ∈ Rm denote an irreducible cuspidal unitary representa-
tion such that some twist of ρ appears in the cuspidal support of σ. We denote
by σcusp the partial cuspidal support of σ. Then there exist unique a, b ∈ R
such that a > 0, b > 0, b− a ∈ Z≥0, and the unique irreducible strongly posi-
tive representation σ′ without νaρ in the cuspidal support, with the property
that σ is the unique irreducible subrepresentation of δ([νaρ, νbρ]) o σ′. Fur-
thermore, there is a non-negative integer l such that a+ l = s, for s > 0 such
that νsρ o σcusp reduces. If l = 0, there are no twists of ρ appearing in the
cuspidal support of σ′ and if l > 0 there exist unique b′ > b and the unique
strongly positive discrete series σ′′, which contains neither νaρ nor νa+1ρ in
its cuspidal support, such that σ′ can be written as the unique irreducible
subrepresentation of δ([νa+1ρ, νb′ρ])o σ′′.

If νxρ appears in the cuspidal support of σ, then the results of ([14, 15])
imply 2x ∈ Z and ρ ∼= ρ̃, where ρ̃ stands for the contragredient of ρ.

By the Mœglin-Tadić classification of discrete series representations for
classical groups ([13, 15]), strongly positive discrete series σ corresponds to
the admissible triple of alternated type. Admissible triple corresponding
to discrete series σ is an ordered triple of the form (Jord, σcusp, ϵ), where
σcusp is the partial cuspidal support of σ, Jord (the set Jordan blocks) is
the finite set of pairs (c, ρ), where c is an integer of the appropriate parity,
and ρ ∈ R is an irreducible cuspidal selfcontragredient representation, while
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ϵ is the function defined on the subset of Jord× Jord∪ Jord into {1,−1}.
For irreducible cuspidal selfcontragredient representation ρ ∈ R, we define
Jordρ = {c : (c, ρ) ∈ Jord} and for c ∈ Jordρ we write c for maximum of
the set {c′ ∈ Jordρ : c′ < c}, if this set is non-empty. An admissible triple
(Jord, σcusp, ϵ) is called a triple of alternated type if for every (c, ρ) ∈ Jord
such that c is defined, we have ϵ((c , ρ), (c, ρ)) = −1. By the definition of
such triples, a strongly positive discrete series is completely determined by
its partial cuspidal support and the set of Jordan blocks. Since all strongly
positive discrete series which we study in this paper share a common partial
cuspidal support, it suffices to define only the set of Jordan blocks when
introducing these strongly positive discrete series. Similar procedure has
also been summarized in Proposition 1.2 of [16]. For more details regarding
the ϵ-function we refer the reader to [15] and [19].

Throughout the paper we denote by Jord(σ) the set of Jordan blocks
corresponding to discrete series σ. Also, we define Jordρ(σ) = {c : (c, ρ) ∈
Jord(σ)}.

Previously given description shows that a non-supercuspidal strongly pos-
itive representation can always be obtained as an irreducible subrepresenta-
tion of the representation induced from the maximal parabolic subgroup hav-
ing strongly positive discrete series on the classical group part. One can see
directly from Proposition 2.2 that the induced representation having tem-
pered but non-strongly positive representation on the classical group part
does not contain a strongly positive subquotient. It remains to see what
can be said about strongly positive subquotients of induced representations
having non-tempered representation on the classical group part.

Let δ denote an irreducible essentially square integrable representation of
GL(m,F ) and let σ denote a discrete series representation of Gn. An induced
representation of the form δoσ is then called the generalized principal series.

In this paper we discuss when an induced representation of the form δ1×
δ2oσ, where δ1, δ2 are irreducible essentially square integrable representations
of a general linear group and σ a discrete series representation of the classical
group, contains a strongly positive subquotient. By [20], δ1 and δ2 correspond
to segments, and we write δ1 = δ([νaρ1, ν

bρ1]) and δ2 = δ([νcρ2, ν
dρ2]). Also,

we denote the partial cuspidal support of σ by σcusp.
Also, it is a direct consequence of the Mœglin-Tadić classification that

if the induced representation of the form δ([νaρ1, ν
bρ1])× δ([νcρ2, ν

dρ2])o σ
contains a discrete series subquotient, then 2a+1−x ∈ Z and 2c+1−y ∈ Z
for x ∈ Jordρ1(σ) and y ∈ Jordρ2(σ). In the sequel we assume that these
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conditions are satisfied.
Set of Jordan blocks of discrete series subquotient of δ1×δ2oσ can be di-

rectly reconstructed from the cuspidal support of this induced representation
(see, for instance, Subsection 4.2 of [3]).

Furthermore, since in the appropriate Grothendieck group holds πo σ =
π̃ o σ we may assume a+ b ≥ 0 and c+ d ≥ 0.

3. Main results

Suppose that the induced representation δ1 × δ2 o σ contains a strongly
positive subquotient σsp. Using property of cuspidal support of strongly
positive discrete series given in Lemma 3.3 of [7], and an embedding of the
non-strongly positive discrete series given in Theorem 3.5 of the same paper,
we conclude that the representation σ must also be strongly positive. From
a + b ≥ 0 and c + d ≥ 0, using Lemma 3.3 of [7] one more time, we deduce
a > 0 and c > 0.

Furthermore, there is some irreducible subquotient π of δ2 o σ such that
σsp is an irreducible subquotient of δ1 o π. Obviously, π is either a strongly
positive or a non-tempered representation. The case of strongly positive π
follows directly from [16], and is summarized in the following proposition.

Proposition 3.1. Induced representation δ([νaρ1, ν
bρ1])× δ([νcρ2, ν

dρ2])oσ
contains a strongly positive irreducible subquotient, which is a subquotient of
δ1oπ for strongly positive subquotient π of δ2oσ, if and only if σ is strongly
positive and one of the following holds:

(i) a > 1
2
, c > 1

2
, 2c − 1 ∈ Jordρ2(σ), [2c + 1, 2d + 1] ∩ Jordρ2(σ) = ∅ and

2a − 1 ∈ Jordρ1(π), [2a + 1, 2b + 1] ∩ Jordρ1(π) = ∅, for the unique
irreducible strongly positive subquotient π of δ([νcρ2, ν

dρ2])o σ.

(ii) a = 1
2
, c > 1

2
, 2c− 1 ∈ Jordρ2(σ), [2c+ 1, 2d+ 1] ∩ Jordρ2(σ) = ∅, ν 1

2ρ1
does not appear in the cuspidal support of δ([νcρ2, ν

dρ2])oσ and either
b < x for x such that 2x+1 = min(Jordρ2(π)) or Jordρ2(π) = ∅, for the
unique irreducible strongly positive subquotient π of δ([νcρ2, ν

dρ2])o σ.

(iii) a > 1
2
, c = 1

2
, ν

1
2ρ2 does not appear in the cuspidal support of σ,

2a− 1 ∈ Jordρ1(π), [2a+1, 2b+1]∩ Jordρ1(π) = ∅ and either d < x for
x such that 2x + 1 = min(Jordρ2(σ)) or Jordρ2(σ) = ∅, for the unique
irreducible strongly positive subquotient π of δ([νcρ2, ν

dρ2])o σ.
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(iv) a = 1
2
, c = 1

2
, ρ1 ̸∼= ρ2, ν

1
2ρ2 does not appear in the cuspidal support of σ,

ν
1
2ρ1 does not appear in the cuspidal support of δ([νcρ2, ν

dρ2])oσ, either
d < x for x such that 2x + 1 = min(Jordρ2(σ)) or Jordρ2(σ) = ∅ and
either b < y for y such that 2y+1 = min(Jordρ1(π)) or Jordρ1(π), for the
unique irreducible strongly positive subquotient π of δ([νcρ2, ν

dρ2])o σ.

If the reducibility of ναρi o σcusp occurs at α = ±1
2
, for some i ∈ {1, 2},

then the fact that ν
1
2ρi does not appear in the cuspidal support of σ is

equivalent to Jordρi(σ) = ∅.
If Jordρi(σ) ̸= ∅, then the fact that ν

1
2ρi, i = 1, 2, does not appear in the

cuspidal support of σ is equivalent to ϵσ(min(Jordρi(σ)), ρi) = −1, where ϵσ
denotes the ϵ-function corresponding to strongly positive discrete series σ.

It remains to determine when the induced representation of the form
δ1 o π, where δ1 is an irreducible essentially square integrable representation
of a general linear group and π the Langlands quotient of generalized principal
series, contains a strongly positive discrete series. Abusing the notation, we
again write δ1 = δ([νaρ1, ν

bρ1]) and π = L(δ([νcρ2, ν
dρ2]) o σ), where σ is a

strongly positive discrete series.
The following result can be deduced from Proposition 7.4 and Definition

7.6 of [4], enhanced by Theorem 9.3 (7) of the same paper. For the sake of
completeness, we provide another proof.

Lemma 3.2. If the induced representation of the form δ([νaρ1, ν
bρ1]) o

L(δ([νcρ2, ν
dρ2]) o σ) contains an irreducible strongly positive subquotient,

then ρ1 ∼= ρ2.

Proof. Suppose that there is some strongly positive irreducible subquotient
σsp of δ([νaρ1, ν

bρ1]) o L(δ([νcρ2, ν
dρ2]) o σ) with ρ1 ̸∼= ρ2. By Theorem 4.6

from [9], there is an irreducible constituent δ ⊗ σ′
sp of µ∗(σsp) such that δ is

an irreducible representation whose cuspidal support contains only twists of
ρ1, while σ

′
sp is a strongly positive discrete series having no twists of ρ1 in the

cuspidal support. It can be easily seen that there has to be some irreducible
constituent δ′⊗σ′

sp of µ
∗(L(δ([νcρ2, ν

dρ2])oσ)), such that δ′×δ([νaρ1, ν
bρ1])

contains δ. Again, only twists of ρ1 appear in the cuspidal support of δ′.
Since ρ1 and ρ2 are non-isomorphic, from the structural formula for

µ∗(δ([νcρ2, νdρ2]) o σ) we deduce that there is an irreducible constituent
δ′⊗σ′′

sp of µ
∗(σ), with σ′′

sp strongly positive, such that δ([νcρ2, ν
dρ2])oσ′′

sp con-
tains σ′

sp. It follows from Proposition 3.1 (i) and Theorem 5.1 (i) of [16] that
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then also the induced representation δ([νcρ2, ν
dρ2]) o σ contains a strongly

positive subquotient, which we denote by πsp.
Since Jacquet modules of strongly positive representations are of multi-

plicity one (by Theorem 4.6 from [9]) and strongly positive representations
appear in generalized principal series with multiplicity one (by Proposition
3.1 (i) and Theorem 5.1 (i) of [16]), it can be deduced that δ′ ⊗ σ′

sp appears
with multiplicity one in both µ∗(δ([νcρ2, ν

dρ2]) o σ) and µ∗(πsp). Thus,
µ∗(L(δ([νcρ2, ν

dρ2])o σ)) does not contain δ′ ⊗ σ′
sp, a contradiction.

To simplify the notation, in the rest of the paper we write ρ instead
of ρ1 and ρ2. The proof of the following lemma follows directly from the
description of strongly positive discrete series given in Proposition 2.2.

Lemma 3.3. If the induced representation δ([νaρ, νbρ])oL(δ([νcρ, νdρ])oσ)
contains an irreducible strongly positive subquotient then a ̸= c.

In the following theorem we state the main results of this paper.

Theorem 3.4. Assume that a ̸= c and that σ is a strongly positive discrete
series.

(i) If a > 1
2
and c > 1

2
, then the induced representation δ([νaρ, νbρ]) o

L(δ([νcρ, νdρ])oσ) contains an irreducible strongly positive subquotient
if and only if one of the following holds:

(a) a < c, c = b+1, 2a− 1 ∈ Jordρ(σ), 2d+1 ̸∈ Jordρ(σ) and if there
is an x such that in Jordρ(σ) holds (2x+1) = 2a− 1 then d < x.
The irreducible strongly positive subquotient σsp is characterized by
Jord(σsp) = Jord(σ) \ {(2a− 1, ρ)} ∪ {(2d+ 1, ρ)}.

(b) c < a, a = d + 1, 2c − 1 ∈ Jordρ(σ), 2b + 1 ̸∈ Jordρ(σ), there
is an x such that in Jordρ(σ) holds (2x + 1) = 2c − 1 and [2a −
1, 2b+ 1] ∩ Jordρ(σ) = {2x+ 1}. The irreducible strongly positive
subquotient σsp is characterized by Jord(σsp) = Jord(σ) \ {(2c −
1, ρ)} ∪ {(2b+ 1, ρ)}.

(ii) If a = 1
2
, then the induced representation δ([νaρ, νbρ])oL(δ([νcρ, νdρ])o

σ) contains an irreducible strongly positive subquotient if and only if one
of the following holds:
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(a) Jordρ(σ) ̸= ∅, ν
1
2ρ does not appear in the cuspidal support of

δ([νcρ, νdρ])oσ, c = b+1 and for x such that 2x+1 = min(Jordρ(σ))
we have d < x.

(b) Jordρ(σ) = ∅ and c = b+ 1.

In both cases, the irreducible strongly positive subquotient σsp is char-
acterized by Jord(σsp) = Jord(σ) ∪ {(2d+ 1, ρ)}.

(iii) If c = 1
2
, then the induced representation δ([νaρ, νbρ])oL(δ([νcρ, νdρ])o

σ) contains an irreducible strongly positive subquotient if and only if ν
1
2ρ

does not appear in the cuspidal support of δ([νaρ, νbρ])oσ, Jordρ(σ) ̸= ∅
and one of the following holds:

(a) 2a−1 ̸∈ Jordρ(σ), 2b+1 ̸∈ Jordρ(σ), d = a−1 and for x such that
2x+1 = min(Jordρ(σ)) we have [2a+1, 2b+1]∩Jordρ(σ) = {2x+1}.

(b) 2a− 1 = min(Jordρ(σ)), 2b+ 1 ̸∈ Jordρ(σ), d = a− 1 and if there
is 2x+ 1 ∈ Jordρ(σ) such that (2x+ 1) = 2a− 1 then b < x.

In both cases, the irreducible strongly positive subquotient σsp is char-
acterized by Jord(σsp) = Jord(σ) ∪ {(2b+ 1, ρ)}.

Several possibilities which appear in the previous theorem will be dis-
cussed in separate sections.

4. Case a > 1
2
and c > 1

2

In this section we assume a > 1
2
and c > 1

2
.

We have divided the proof of Theorem 3.4 (i) in a sequence of lemmas.
We start with two technical lemmas which reduce our analysis to the case
when the union of segments [νaρ, νbρ] and [νcρ, νdρ] is again a segment.

Lemma 4.1. If a < c and c ̸= b+1, the induced representation δ([νaρ, νbρ])o
L(δ([νcρ, νdρ])o σ) does not contain an irreducible strongly positive subquo-
tient.

Proof. Suppose, on the contrary, a < c, c ̸= b + 1 and that there is an
irreducible strongly positive subquotient σsp of δ1 o L(δ2 o σ). Since a < c
and c ̸= b+ 1, using a cuspidal support argument analogous to the one from
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Subsection 4.2 of [3], we obtain 2a − 1, 2c − 1 ∈ Jordρ(σ), 2b + 1, 2d + 1 ̸∈
Jordρ(σ) and b ̸= d. Furthermore, we have

Jord(σsp) = Jord(σ) \ {(2a− 1, ρ), (2c− 1, ρ)} ∪ {(2b+ 1, ρ), (2d+ 1, ρ)}.

Let us define x by 2x + 1 = min{2y + 1 ∈ Jordρ(σsp) : y ≥ a}. Obviously,
x ≤ b and (by Theorem 4.6 of [9]) there is a strongly positive discrete series
σ′
sp such that µ∗(σsp) ≥ δ([νaρ, νxρ])⊗σ′

sp. This implies µ∗(δ1oL(δ2oσ)) ≥
δ([νaρ, νxρ])⊗ σ′

sp and µ∗(δ1 × δ2 o σ) ≥ δ([νaρ, νxρ])⊗ σ′
sp. We will analyze

the last inequality using Lemma 2.1.
There are a − 1 ≤ i1 ≤ j1 ≤ b, c − 1 ≤ i2 ≤ j2 ≤ d and an irreducible

constituent δ ⊗ π of µ∗(σ) such that

δ([νaρ, νxρ]) ≤δ([ν−i1ρ, ν−aρ])× δ([νj1+1ρ, νbρ])×
δ([ν−i2ρ, ν−cρ])× δ([νj2+1ρ, νdρ])× δ

and

σ′
sp ≤δ([νi1+1ρ, νj1ρ])× δ([νi2+1ρ, νj2ρ])o π.

We see at once i1 = a−1 and i2 = c−1. Two possibilities will be considered
separately:

• x = b. Since b ̸= d and 2b + 1 ̸∈ Jordρ(σ), using Proposition 2.1 from
[15] we deduce that j1 < b. Furthermore, a < c and 2a− 1 ∈ Jordρ(σ),
together with Theorem 4.6 from [9], imply j1 = a − 1. Now it can
be easily seen that if µ∗(δ1 o L(δ2 o σ)) ≥ δ([νaρ, νbρ]) ⊗ σ′

sp then
L(δ2 o σ) ∼= σ′

sp, which is impossible.

• x < b. This implies j1 = b. Since a < c, it follows that δ is of the
form δ([νaρ, νyρ]) for some y ≥ a, contradicting 2a − 1 ∈ Jordρ(σ) by
Theorem 4.6 from [9].

This proves the lemma.

Lemma 4.2. If c < a and a ̸= d+1, the induced representation δ([νaρ, νbρ])o
L(δ([νcρ, νdρ])o σ) does not contain an irreducible strongly positive subquo-
tient.
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Proof. We again suppose, on the contrary, c < a, a ̸= d+1 and that there is
an irreducible strongly positive subquotient σsp of δ1oL(δ2oσ). In the same
way as in the proof of the previous lemma we obtain 2a−1, 2c−1 ∈ Jordρ(σ),
2b+ 1, 2d+ 1 ̸∈ Jordρ(σ), b ̸= d and

Jord(σsp) = Jord(σ) \ {(2a− 1, ρ), (2c− 1, ρ)} ∪ {(2b+ 1, ρ), (2d+ 1, ρ)}.

We define x by 2x+1 = min{2y+1 ∈ Jordρ(σsp) : y ≥ c}. Obviously, x ≤ d
and x ≤ b.

We must have µ∗(σsp) ≥ δ([νcρ, νxρ]) ⊗ σ′
sp for some strongly positive

discrete series σ′
sp. Using the structural formula for µ∗(δ1 o L(δ2 o σ)) we

deduce that there are a− 1 ≤ i ≤ j ≤ b and an irreducible constituent δ⊗ π
of µ∗(L(δ2 o σ)) such that

δ([νcρ, νxρ]) ≤δ([ν−iρ, ν−aρ])× δ([νj+1ρ, νbρ])× δ

and

σ′
sp ≤δ([νi+1ρ, νjρ])o π.

Since 0 < c and c < a, it follows that δ is of the form δ([νcρ, νyρ]), where y
equals either x or j (note that x ≤ b).

Consequently, if δ1 o L(δ2 o σ) contains σsp, then µ∗(L(δ2 o σ)) contains
an irreducible constituent of the form δ([νcρ, νyρ]) ⊗ σ′, where y ≤ d. Such
irreducible constituent also appears in µ∗(δ2 o σ). Thus, there are c − 1 ≤
i′ ≤ j′ ≤ d and an irreducible constituent δ′ ⊗ π′ of µ∗(σ) such that

δ([νcρ, νyρ]) ≤δ([ν−i′ρ, ν−cρ])× δ([νj′+1ρ, νdρ])× δ′

and

σ′ ≤δ([νi′+1ρ, νj′ρ])o π′.

Condition 2c − 1 ∈ Jordρ(σ) implies j′ = c − 1 and from y ≤ d we obtain
that y = x = d. Also, it follows that σ′ is isomorphic to σ.

Thus, δ2⊗σ is the only irreducible constituent of the form δ([νcρ, νyρ])⊗
σ′, with y ≤ d, appearing in µ∗(δ2 o σ) and appears there with multiplicity
one. Furthermore, it follows that δ2 o σ has a unique irreducible subrep-
resentation, which we denote by π. Obviously, µ∗(π) ≥ δ2 ⊗ σ. We have

12



2c − 1 ∈ Jordρ(σ) and 2d + 1 ̸∈ Jordρ(σ), so Proposition 3.1 (i) of [16]
shows that δ2 o σ is representation of length two and in the appropriate
Grothendieck group holds δ2 o σ = L(δ2 o σ) + π, for π ̸∼= L(δ2 o σ).

Therefore, µ∗(L(δ2 o σ)) does not contain δ2 ⊗ σ. So, δ1 oL(δ2 o σ) does
not contain an irreducible strongly positive subquotient.

The next lemma finishes the proof of the first part of Theorem 3.4 (i).

Lemma 4.3. If a < c and c = b+1, the induced representation δ([νaρ, νbρ])o
L(δ([νcρ, νdρ])oσ) contains an irreducible strongly positive subquotient if and
only if 2a− 1 ∈ Jordρ(σ), 2d+1 ̸∈ Jordρ(σ) and if there is an x such that in
Jordρ(σ) holds (2x+ 1) = 2a− 1 then d < x.

Proof. If there is an strongly positive discrete series subquotient of δ1 o
L(δ2 o σ), then from the cuspidal support of this representation we obtain
2a− 1 ∈ Jordρ(σ), 2d + 1 ̸∈ Jordρ(σ). Suppose that there is an x such that
in Jordρ(σ) holds (2x + 1) = 2a − 1. Condition 2d + 1 ̸∈ Jordρ(σ) implies
d ̸= x. To obtain a contradiction, suppose d > x and that there is a strongly
positive discrete series subquotient σsp of δ1oL(δ2oσ). Using the description
of Jordan blocks in terms of the cuspidal support, we obtain

Jord(σsp) = Jord(σ) \ {(2a− 1, ρ)} ∪ {(2d+ 1, ρ)}.

Theorem 4.6 of [9] shows µ∗(σsp) ≥ δ([νaρ, νxρ]) ⊗ σ′
sp, for strongly positive

discrete series σ′
sp such that Jord(σ′

sp) = Jord(σsp)\{(2x+1, ρ)}∪{(2a−1, ρ)}.
It follows that µ∗(δ1 oL(δ2 o σ)) ≥ δ([νaρ, νxρ])⊗ σ′

sp and µ∗(δ1 × δ2 o σ) ≥
δ([νaρ, νxρ])⊗ σ′

sp. Using the structural formula for µ∗ we obtain that there
are a − 1 ≤ i1 ≤ j1 ≤ b, c − 1 ≤ i2 ≤ j2 ≤ d and an irreducible constituent
δ ⊗ σ′′

sp of µ∗(σ) such that

δ([νaρ, νxρ]) ≤δ([ν−i1ρ, ν−aρ])× δ([νj1+1ρ, νbρ])×
δ([ν−i2ρ, ν−cρ])× δ([νj2+1ρ, νdρ])× δ

and

σ′
sp ≤δ([νi1+1ρ, νj1ρ])× δ([νi2+1ρ, νj2ρ])o σ′′

sp.

Since a > 0, x < d and 2a − 1 ∈ Jordρ(σ), we get i1 = a − 1, i2 = c − 1,
j1 = a − 1 and j2 = d. It follows that δ ∼= δ([νb+1ρ, νxρ]) and, in the same
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way as in the proof of Lemma 4.1, we deduce that x > b since otherwise we
would have L(δ2 o σ) ∼= σ′

sp. Furthermore, we have Jord(σ′′
sp) = Jord(σ) \

{(2x+ 1, ρ)} ∪ {(2b+ 1, ρ)} and

σ′
sp ≤ δ([νcρ, νdρ])o σ′′

sp.

Proposition 3.1 (i) of [16] implies [2c+ 1, 2d+ 1] ∩ Jordρ(σ
′′
sp) = ∅, i.e., [2c+

1, 2d+ 1] ∩ Jordρ(σ) = {2x+ 1}.
Previous analysis also implies that if δ1 o L(δ2 o σ) contains σsp then

µ∗(L(δ2 o σ)) ≥ δ([νb+1ρ, νxρ]) ⊗ σ′
sp. It can be easily seen that such irre-

ducible constituent appears in µ∗(δ2 o σ) with multiplicity one.
Applying Proposition 3.1 (i) of [16] one more time we deduce that in the

appropriate Grothendieck group we have

δ2 o σ = L(δ2 o σ) + L(δ([νcρ, νxρ])o σ′
sp).

As [2c−1, 2x+1]∩Jordρ(σ
′
sp) = ∅, the induced representation δ([νcρ, νxρ])o

σ′
sp is irreducible and isomorphic to its Langlands quotient. Frobenius reci-

procity now gives µ∗(L(δ([νcρ, νxρ]) o σ′
sp)) ≥ δ([νb+1ρ, νxρ]) ⊗ σ′

sp. Thus,
µ∗(L(δ2oσ)) does not contain δ([νb+1ρ, νxρ])⊗σ′

sp and there are no strongly
positive discrete series subquotients of δ1 o L(δ2 o σ), a contradiction.

Conversely, let us assume 2a − 1 ∈ Jordρ(σ), 2d + 1 ̸∈ Jordρ(σ) and if
there is an x such that in Jordρ(σ) holds (2x + 1) = 2a − 1 then d < x.
By Theorem 3.4 of [6], induced representation δ([νaρ, νdρ])o σ has a unique
irreducible subrepresentation, which is strongly positive (by Theorem 4.6 of
[6]) and will be denoted by σsp. We have the following embeddings and
intertwining operator:

σsp ↪→δ([νaρ, νdρ])o σ ↪→ δ([νcρ, νdρ])× δ([νaρ, νbρ])o σ

→δ([νaρ, νbρ])× δ([νcρ, νdρ])o σ.

Since [2c − 1, 2d + 1] ∩ Jordρ(σ) = ∅ holds, by Proposition 3.1 (i) of [16]
δ([νcρ, νdρ])oσ is irreducible and we have L(δ([νcρ, νdρ])oσ) ∼= δ([νcρ, νdρ])o
σ. Therefore, σsp is an irreducible subquotient of δ1 o L(δ2 o σ). This com-
pletes the proof.

The following two lemmas complete the proof of Theorem 3.4 (i).

Lemma 4.4. If c < a, a = d+1 and the induced representation δ([νaρ, νbρ])o
L(δ([νcρ, νdρ])oσ) contains an irreducible strongly positive subquotient then
2c − 1 ∈ Jordρ(σ), 2b + 1 ̸∈ Jordρ(σ), there is an x such that in Jordρ(σ)
holds (2x+ 1) = 2c− 1 and [2a− 1, 2b+ 1] ∩ Jordρ(σ) = {2x+ 1}.
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Proof. If there is a strongly positive discrete series subquotient σsp of δ1 o
L(δ2 o σ), then in the same way as before we deduce that 2c− 1 ∈ Jordρ(σ),
2b+ 1 ̸∈ Jordρ(σ). Directly from the cuspidal support of this induced repre-
sentation, we get

Jord(σsp) = Jord(σ) \ {(2c− 1, ρ)} ∪ {(2b+ 1, ρ)}.

Let us first assume that there is no x such that in Jordρ(σ) holds (2x +
1) = 2c− 1, i.e., 2c− 1 is the maximum of Jordρ(σ). It follows that µ

∗(σsp)
contains δ([νcρ, νbρ])⊗σ. Thus, µ∗(δ1oL(δ2oσ)) also contains δ([νcρ, νbρ])⊗
σ and, by Lemma 2.1, there are a − 1 ≤ i ≤ j ≤ b and an irreducible
constituent δ ⊗ σ′ of µ∗(L(δ2 o σ)) such that

δ([νcρ, νbρ]) ≤δ([ν−iρ, ν−aρ])× δ([νjρ, νbρ])× δ

and

σ ≤δ([νi+1ρ, νjρ])o σ′.

Using c < a, a = d + 1, 2c − 1 ∈ Jordρ(σ) and the fact that 2c − 1 is the
maximum of Jordρ(σ), we directly get i = a − 1, j = a, δ ∼= δ([νcρ, νdρ])
and σ ∼= σ′. It follows that µ∗(L(δ2 o σ)) contains δ([νcρ, νdρ])⊗ σ. It is not
hard to see that such irreducible constituent appears with multiplicity one
in µ∗(δ2 o σ). By Proposition 3.1 (i) of [16], δ2 o σ is a length two repre-
sentation whose irreducible subrepresentation is a strongly positive discrete
series which contains δ([νcρ, νdρ])⊗ σ in its Jacquet module with respect to
the appropriate standard parabolic subgroup. Thus, µ∗(L(δ2 o σ)) does not
contain δ([νcρ, νdρ])⊗ σ, a contradiction.

We will now consider the remaining case. Suppose that there is an x such
that in Jordρ(σ) holds (2x+1) = 2c−1. Condition 2b+1 ̸∈ Jordρ(σ) implies
b ̸= x. If b < x, then again µ∗(σsp) contains δ([ν

cρ, νbρ])⊗σ and we obtain a
contradiction in the same way as in the previous case. Thus, we can assume
b > x. Now both µ∗(σsp) and µ∗(δ1 o L(δ2 o σ)) contain δ([νcρ, νxρ])⊗ σ′

sp,
for strongly positive discrete series σ′

sp such that Jord(σ′
sp) = Jord(σ)\{(2x+

1, ρ)} ∪ {(2b+ 1, ρ)}. Lemma 2.1 implies that there are a− 1 ≤ i1 ≤ j1 ≤ b,
c− 1 ≤ i2 ≤ j2 ≤ d and an irreducible constituent δ⊗ σ′′

sp of µ∗(σ) such that

δ([νcρ, νxρ]) ≤δ([ν−i1ρ, ν−aρ])× δ([νj1+1ρ, νbρ])×
δ([ν−i2ρ, ν−cρ])× δ([νj2+1ρ, νdρ])× δ
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and

σ′
sp ≤δ([νi1+1ρ, νj1ρ])× δ([νi2+1ρ, νj2ρ])o σ′′

sp.

It follows immediately that i1 = a − 1, j1 = b, i2 = c − 1, j2 = c − 1 and
δ ∼= δ([νd+1ρ, νxρ]). Also, this gives d ≤ x. Furthermore, we see that x ̸= d
shows that σ′′

sp is a strongly positive discrete series such that Jord(σ′′
sp) =

Jord(σ) \ {(2x+ 1, ρ)} ∪ {(2d+ 1, ρ)}, while x = d implies σ′′
sp

∼= σ.
Since the induced representation δ([νaρ, νbρ]) o σ′′

sp has to contain the
strongly positive subquotient σ′

sp, from Proposition 3.1 (i) of [16] we get [2a+
1, 2b+1]∩ Jordρ(σ

′
sp) = ∅, i.e., [2a− 1, 2b+1]∩ Jordρ(σ) = {2x+1} and the

lemma is proved.

Lemma 4.5. Suppose that c < a and a = d+1. If 2c−1 ∈ Jordρ(σ), 2b+1 ̸∈
Jordρ(σ) and there is an x such that in Jordρ(σ) holds (2x + 1) = 2c − 1
and [2a − 1, 2b + 1] ∩ Jordρ(σ) = {2x + 1}, then the induced representation
δ([νaρ, νbρ]) o L(δ([νcρ, νdρ]) o σ) contains an irreducible strongly positive
subquotient.

Proof. First we consider the case x = d. Let us denote by σsp the strongly
positive discrete series such that Jord(σsp) = Jord(σ) \ {(2c− 1, ρ)} ∪ {(2b+
1, ρ)}. We have the following embeddings and intertwining operator:

σsp ↪→ δ([νcρ, νdρ])o σ′
sp

↪→ δ([νcρ, νdρ])× δ([νaρ, νbρ])o σ

→ δ([νaρ, νbρ])× δ([νcρ, νdρ])o σ,

where σ′
sp stands for the strongly positive discrete series with the property

Jord(σ′
sp) = Jord(σsp) \ {(2d+1, ρ)}∪{(2c− 1, ρ)}. Since 2d+1 ∈ Jordρ(σ),

it follows from Proposition 3.1 (i) of [16] that δ([νcρ, νdρ])o σ is irreducible,
hence L(δ([νcρ, νdρ]) o σ) ∼= δ([νcρ, νdρ]) o σ. It then follows that σsp ≤
δ([νaρ, νbρ])o L(δ([νcρ, νdρ])o σ), as needed.

We will now consider the case x > d, i.e., 2d + 1 ̸∈ Jordρ(σ). Two
possibilities will be studied separately:

• x = a.

Let us denote by σ′ a strongly positive discrete series such that Jord(σ′) =
Jord(σ) \ {(2x+ 1, ρ)} ∪ {(2b+ 1, ρ)}. It follows from [15], Lemma 4.6, that
the induced representation

δ([ν−aρ, νaρ])o σ′
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contains two irreducible subquotients, which are non-isomorphic tempered
subrepresentations. It can be obtained directly from Lemma 2.1 and Propo-
sition 3.1 (i) of [16] that µ∗(δ([ν−aρ, νaρ]) o σ′) ≥ δ([ν−c+1ρ, νaρ]) ⊗ σsp,
where σsp is strongly positive discrete series such that Jord(σsp) = Jord(σ′) \
{(2c − 1, ρ)} ∪ {(2a + 1, ρ)}. We denote by τ an irreducible subrepresen-
tation of δ([ν−aρ, νaρ]) o σ′ such that µ∗(τ) contains δ([ν−c+1ρ, νaρ]) ⊗ σsp.
Furthermore, we denote by σ′

sp a strongly positive discrete series such that
Jord(σ′

sp) = Jord(σ) \ {(2x+ 1, ρ)} ∪ {(2d+ 1, ρ)}. Then δ([ν−aρ, νaρ])o σ′

is a subrepresentation of

δ([ν−aρ, νaρ])× δ([νaρ, νbρ])o σ′
sp.

This implies the following embeddings and intertwining operator:

τ ↪→δ([ν−aρ, νaρ])o σ′ ↪→ δ([ν−aρ, νaρ])× δ([νaρ, νbρ])o σ′
sp.

→δ([νaρ, νbρ])× δ([ν−aρ, νaρ])o σ′
sp.

Consequently, µ∗(δ([νaρ, νbρ])×δ([ν−aρ, νaρ])oσ′
sp) contains δ([ν

−c+1ρ, νaρ])⊗
σsp. Using the structural formula for µ∗ we obtain that there are a − 1 ≤
i1 ≤ j1 ≤ b, −a − 1 ≤ i2 ≤ j2 ≤ a and an irreducible constituent δ ⊗ σ′′

sp of
µ∗(σ′

sp) such that

δ([ν−c+1ρ, νaρ]) ≤δ([ν−i1ρ, ν−aρ])× δ([νj1+1ρ, νbρ])×
δ([ν−i2ρ, νaρ])× δ([νj2+1ρ, νaρ])× δ

and

σsp ≤δ([νi1+1ρ, νj1ρ])× δ([νi2+1ρ, νj2ρ])o σ′′
sp.

Since −c+ 1 ≤ 0 and c < a we get i1 = a− 1. Furthermore, since j1 + 1 > 0
and, by Theorem 4.6 of [9], in δ appear no twists of ρ with negative exponents,
we deduce that either −i2 = −c+1 or j2+1 = −c+1. It follows that j1 = b
and σ′′

sp
∼= σ′

sp. This implies

σsp ≤ δ([νaρ, νbρ])× δ([νcρ, νaρ])o σ′
sp

(note that in the appropriate Grothendieck group we have π1 × π2 o σ1 =
π1 × π̃2 o σ1).
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There is an irreducible subquotient σ1 of δ([ν
cρ, νaρ])oσ′

sp such that σsp ≤
δ([νaρ, νbρ])oσ1. Furthermore, by the description of Jord(σsp), there is some
irreducible representation σ2 such that µ∗(σsp) ≥ δ([νcρ, νaρ])⊗σ2. Analyzing
µ∗(δ([νaρ, νbρ])oσ1) it can be deduced that µ∗(σ1) contains δ([ν

cρ, νaρ])⊗σ3

for some irreducible representation σ3. Since 2c−1 is an element of Jordρ(σ
′
sp),

one can see, using the same argument as before, that only irreducible con-
stituent of the form δ([νcρ, νaρ])⊗ σ3 appearing in µ∗(δ([νcρ, νaρ])o σ′

sp) is
δ([νcρ, νaρ])⊗ σ′

sp which appears there with multiplicity one.
By Proposition 3.1 (i) of [16], since a = x, in the appropriate Grothendieck

group we have

δ([νcρ, νaρ])o σ′
sp = L(δ([νcρ, νaρ])o σ′

sp) + L(δ([νcρ, νdρ])o σ)

and L(δ([νcρ, νdρ])o σ) is an irreducible subrepresentation of δ([νcρ, νaρ])o
σ′
sp. Using Frobenius reciprocity we conclude that L(δ([νcρ, νdρ])o σ) is the

only irreducible subquotient of δ([νcρ, νaρ]) o σ′
sp having δ([νcρ, νaρ]) ⊗ σ′

sp

in its Jacquet module with respect to the appropriate parabolic subgroup.
In consequence, σsp is contained in δ([νaρ, νbρ])o L(δ([νcρ, νdρ])o σ).

• x > a.

Let us denote by σ′ a strongly positive discrete series such that Jord(σ′) =
Jord(σ) \ {(2x + 1, ρ)} ∪ {(2d + 1, ρ)}. Furthermore, we denote by σds a
discrete series which is a subrepresentation of both induced representations
δ([ν−dρ, νaρ])oσ and δ([ν−aρ, νxρ])oσ′. This uniquely determines σds ([10,
15]). By Proposition 4.5 of [10], the induced representation δ([νaρ, νbρ])oσds

contains two discrete series subquotients, and exactly one of them contains
δ([ν−c+1ρ, νaρ])⊗ σsp in its Jacquet module with respect to the appropriate
standard parabolic subgroup, where σsp stands for the strongly positive dis-
crete series such that Jord(σsp) = Jord(σ) \ {(2c− 1, ρ)} ∪ {(2b+ 1, ρ)}. We
will denote such discrete series subquotient of δ([νaρ, νbρ])o σds by σ′

ds.
Since σ′

ds is obviously an irreducible subquotient of the induced represen-
tation δ([νaρ, νbρ])× δ([ν−dρ, νaρ])o σ, we deduce

δ([ν−c+1ρ, νaρ])⊗ σsp ≤ µ∗(δ([νaρ, νbρ])× δ([ν−dρ, νaρ])o σ).

The structural formula for µ∗ implies that there are a − 1 ≤ i1 ≤ j1 ≤ b,
−d − 1 ≤ i2 ≤ j2 ≤ a and an irreducible constituent δ ⊗ σ′′ of µ∗(σ) such
that

δ([ν−c+1ρ, νaρ]) ≤δ([ν−i1ρ, ν−aρ])× δ([νj1+1ρ, νbρ])×
δ([ν−i2ρ, νdρ])× δ([νj2+1ρ, νaρ])× δ
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and

σsp ≤δ([νi1+1ρ, νj1ρ])× δ([νi2+1ρ, νj2ρ])o σ′′.

It follows that i1 = a−1, j1 = b, σ′′ ∼= σ and (i2, j2) equals either (−d−1,−c)
or (c− 1, d). In any case, σsp is an irreducible subquotient of δ([νaρ, νbρ])×
δ([νcρ, νdρ])o σ.

There is an irreducible subquotient σ1 of δ([ν
cρ, νdρ])oσ such that σsp is

an irreducible constituent of δ([νaρ, νbρ]) o σ1. Also, since µ∗(σsp) contains
an irreducible quotient of the form δ([νcρ, νxρ])⊗ σ2, using c < a, x < b and
the structural formula we deduce that µ∗(σ1) also contains some irreducible
constituent of the form δ([νcρ, νxρ]) ⊗ σ3. Proposition 3.1 (i) of [16] implies
that in the appropriate Grothendieck group we have

δ([νcρ, νdρ])o σ = L(δ([νcρ, νdρ])o σ) + σ′
sp,

where σ′
sp is strongly positive discrete series such that Jord(σ′

sp) = Jord(σ) \
{(2c − 1, ρ)} ∪ {(2d + 1, ρ)}. But d < x and Theorem 4.6 of [9] show that
µ∗(σ′

sp) does not contain irreducible constituent of the form δ([νcρ, νxρ])⊗σ3.
This clearly implies σ1

∼= L(δ([νcρ, νdρ])oσ) and the induced representation
δ([νaρ, νbρ])oL(δ([νcρ, νdρ])oσ) contains the strongly positive discrete series
σsp, which is the desired conclusion.

5. Case a = 1
2

In this section we assume a = 1
2
. Description of strongly positive discrete

series, given in Proposition 2.2, implies that if δ1 o L(δ2 o σ) contains an

irreducible strongly positive subquotient then ν
1
2ρ does not appear in the

cuspidal support of σ.
We will first discuss the case Jordρ(σ) ̸= ∅. In this case, necessary and

sufficient conditions under which the induced representation δ1 o L(δ2 o σ)
contains a strongly positive irreducible subquotient are given by the following
proposition.

Proposition 5.1. Suppose Jordρ(σ) ̸= ∅ and define x by 2x+1 = min(Jordρ(σ)).

Then the induced representation δ([ν
1
2ρ, νbρ])oL(δ([νcρ, νdρ])o σ) contains

an irreducible strongly positive subquotient if and only if ν
1
2ρ does not appear

in the cuspidal support of δ([νcρ, νdρ])o σ, c = b+ 1 and d < x.
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Proof. Let us first assume that there is some irreducible strongly positive
subquotient σsp of δ1 o L(δ2 o σ). We have already observed that then ν

1
2ρ

does not appear in the cuspidal support of σ. If c ̸= b+1, it can be deduced
in the same way as in the proof of Lemma 4.1 that δ1 o L(δ2 o σ) does not
contain an irreducible strongly positive subquotient.

Thus, it remains to consider the case c = b + 1. In this case, 2d + 1 ̸∈
Jordρ(σ) and we have Jord(σsp) = Jord(σ) ∪ {(2d + 1, ρ)}. If x < d then

µ∗(σsp) ≥ δ([ν
1
2ρ, νxρ]) ⊗ σ′

sp for strongly positive discrete series σ′
sp such

that Jord(σ′
sp) = Jord(σsp) \ {(2x + 1, ρ)} and we have b ≤ x. If b = x,

using the same argument as in the previous case we deduce that there are
no irreducible strongly positive subquotients of δ1 o L(δ2 o σ). Let us now
assume b < x and x < d. Since σsp is also a subquotient of δ1 × δ2 o σ, it

follows that µ∗(δ1 × δ2 o σ) contains δ([ν
1
2ρ, νxρ]) ⊗ σ′

sp. We shall analyze
µ∗(δ1 × δ2 o σ) using the structural formula from Lemma 2.1.

There are −1
2
≤ i1 ≤ j1 ≤ b, c − 1 ≤ i2 ≤ j2 ≤ d and an irreducible

constituent δ ⊗ π of µ∗(σ) such that

δ([ν
1
2ρ, νxρ]) ≤δ([ν−i1ρ, ν− 1

2ρ])× δ([νj1+1ρ, νbρ])×
δ([ν−i2ρ, ν−cρ])× δ([νj2+1ρ, νdρ])× δ

and

σ′
sp ≤δ([νi1+1ρ, νj1ρ])× δ([νi2+1ρ, νj2ρ])o π.

Since c > 0, x > 0 and x < d, we directly get i1 = −1
2
, i2 = c − 1 and

j2 = d. Furthermore, since ν
1
2ρ does not appear in the cuspidal support of σ,

we have j1 = −1
2
and δ ∼= δ([νb+1ρ, νxρ]). It follows from Theorem 4.6 of [9]

that π is the strongly positive discrete series such that Jord(π) = Jord(σ) \
{(2x+1, ρ)}∪{(2b+1, ρ)}. Since the induced representation δ([νcρ, νdρ])oπ
contains the strongly positive discrete series σ′

sp, Proposition 3.1 (i) of [16]
implies [2c+1, 2d+1]∩Jordρ(π) = ∅, i.e., [2c+1, 2d+1]∩Jordρ(σ) = {2x+1}.

Also, we conclude that if δ1 o L(δ2 o σ) contains σsp, then µ∗(L(δ2 o σ))
contains δ([νb+1ρ, νxρ]) ⊗ σ′

sp. Proposition 3.1 (i) of [16] implies that in the
appropriate Grothendieck group we have

δ2 o σ = L(δ2 o σ) + L(δ([νcρ, νxρ])o σ′
sp).

Using Proposition 3.1 (ii) of [16], we deduce that the induced representa-
tion δ([νcρ, νxρ])oσ′

sp is irreducible, thus it is isomorphic to L(δ([νcρ, νxρ])o
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σ′
sp) and Frobenius reciprocity implies µ∗(δ([νcρ, νxρ])oσ′

sp) ≥ δ([νcρ, νxρ])⊗
σ′
sp. It can be easily seen that δ([νcρ, νxρ])⊗σ′

sp appears with multiplicity one
in µ∗(δ2 o σ) so it does not appear in µ∗(L(δ2 o σ)). Consequently, if x < d
the induced representation δ1 o L(δ2 o σ) does not contain an irreducible
strongly positive subquotient.

In this way we have proved that if δ1 o L(δ2 o σ) contains an irreducible

strongly positive subquotient then ν
1
2ρ does not appear in the cuspidal sup-

port of σ, c = b+ 1 and d < x.

Conversely, let us now assume that ν
1
2ρ does not appear in the cuspidal

support of σ, c = b + 1 and d < x. Again, we denote by σsp a strongly
positive discrete series such that Jord(σsp) = Jord(σ) ∪ {(2d + 1, ρ)}. Using
Proposition 3.1 (ii) of [16], in the same way as in the last part of the proof
of Lemma 4.3, we obtain that δ1 o L(δ2 o σ) contains σsp. This finishes the
proof.

Now we assume Jordρ(σ) = ∅. Then ν
1
2ρoσcusp reduces and there are no

twists of ρ appearing in the cuspidal support of σ. The following proposition
can be proved in the same way as Lemmas 4.2 and 4.3, details being left to
the reader.

Proposition 5.2. Suppose Jordρ(σ) = ∅. Then the induced representation

δ([ν
1
2ρ, νbρ]) o L(δ([νcρ, νdρ]) o σ) contains an irreducible strongly positive

subquotient if and only if c = b+ 1.

6. Case c = 1
2

This section is devoted to the analysis of the remaining case c = 1
2
. Again,

if δ1 o L(δ2 o σ) contains an irreducible strongly positive subquotient then

ν
1
2ρ does not appear in the cuspidal support of σ. We start with the following

result:

Lemma 6.1. If Jordρ(σ) = ∅, the induced representation δ([νaρ, νbρ]) o
L(δ([ν

1
2ρ, νdρ])o σ) does not contain an irreducible strongly positive subquo-

tient.

Proof. From Jordρ(σ) = ∅ we conclude that ν
1
2ρoσcusp reduces and there are

no twists of ρ appearing in the cuspidal support of σ. Suppose, contrary to
our assumption, that there is some strongly positive irreducible subquotient
σsp of δ1 o L(δ2 o σ). By Theorem 5.1 of [16], induced representation δ2 o σ
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contains a strongly positive discrete series which will be denoted by πsp. We
note that πsp is also the unique irreducible subrepresentation of δ2 o σ.

Using the description of Jacquet modules of strongly positive represen-
tations we deduce that µ∗(σsp) contains an irreducible constituent of the

form δ([ν
1
2ρ, νyρ])⊗ σ′

sp, for some strongly positive discrete series σ′
sp. Thus,

µ∗(δ1 o L(δ2 o σ)) also contains δ([ν
1
2ρ, νyρ])⊗ σ′

sp.

Using Lemma 2.1 we obtain that µ∗(L(δ2 o σ)) contains δ([ν
1
2ρ, νdρ]) ⊗

σ′
sp, which is impossible since such irreducible constituent is contained with

multiplicity one in both µ∗(δ2oσ) and µ∗(πsp). This completes the proof.

In the rest of this section we assume Jordρ(σ) ̸= ∅. In the next couple of
lemmas we will finish the proof of Theorem 3.4 (iii).

Lemma 6.2. Suppose 2a − 1 ̸∈ Jordρ(σ). If the induced representation

δ([νaρ, νbρ]) o L(δ([ν
1
2ρ, νdρ]) o σ) contains an irreducible strongly positive

subquotient then ν
1
2ρ does not appear in the cuspidal support of σ, 2b + 1 ̸∈

Jordρ(σ), d = a − 1 and for x such that 2x + 1 = min(Jordρ(σ)) we have
[2a+ 1, 2b+ 1] ∩ Jordρ(σ) = {2x+ 1}.

Proof. It follows directly from the cuspidal support of δ1 o L(δ2 o σ) that
if such induced representation contains a discrete series subquotient then
2b+1 ̸∈ Jordρ(σ) and d = a−1. Furthermore, if σsp is an irreducible strongly
positive subquotient of δ1oL(δ2oσ) then Jord(σsp) = Jord(σ)∪{(2b+1, ρ)}.
Let us define y by 2y+1 = min(Jordρ(σsp)). Obviously, y ≤ b. If y = b, then
2d + 1 is less than min(Jordρ(σ)) and, by Theorem 5.1 of [16], the induced
representation δ2oσ contains a strongly positive discrete series. Now, in the
same way as in the proof of Lemma 6.1, we deduce that δ1 o L(δ2 o σ) does
not contain an irreducible strongly positive subquotient.

Consequently, y < b. This also gives 2y + 1 = min(Jordρ(σ)). Using the
description of Jacquet modules of strongly positive representations, we de-
duce that µ∗(σsp) contains an irreducible constituent of the form δ([ν

1
2ρ, νyρ])⊗

σ′
sp, for some strongly positive discrete series σ′

sp. Using Lemma 2.1 together
with Theorem 4.6 of [9], we deduce that σ′

sp is an irreducible subquotient of
the induced representation of the form δ([νaρ, νbρ]) o σ′′

sp, where σ′′
sp is the

strongly positive discrete series such that Jord(σ′′
sp) = Jord(σ)\{(2y+1, ρ)}∪

{(2a − 1, ρ)}. Proposition 3.1 (i) of [16] gives [2a + 1, 2b + 1] ∩ Jordρ(σ) =
{2y + 1} and the lemma is proved.
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The following lemma completes the proof of the first part of Theorem
3.4 (iii).

Lemma 6.3. Suppose that ν
1
2ρ does not appear in the cuspidal support of σ,

2a−1, 2b+1 ̸∈ Jordρ(σ), d = a−1 and for x such that 2x+1 = min(Jordρ(σ))
we have [2a+1, 2b+1]∩Jordρ(σ) = {2x+1}. Then the induced representation

δ([νaρ, νbρ]) o L(δ([ν
1
2ρ, νdρ]) o σ) contains an irreducible strongly positive

subquotient.

Proof. Two possibilities will be considered separately:

• x = a.

Let us denote by σsp strongly positive discrete series such that Jord(σsp) =
Jord(σ)\{(2x+1, ρ)}∪{(2b+1, ρ)}. Furthermore, let us denote by τ a tem-
pered subrepresentation of the induced representation δ([ν−aρ, νaρ]) o σsp

such that µ∗(τ) ≥ δ([ν
1
2ρ, νaρ]) × δ([ν

1
2ρ, νaρ]) ⊗ σsp. The induced repre-

sentation δ([ν−aρ, νaρ])o σsp contains two tempered subrepresentations and
such a subrepresentation τ is unique by Corollary 4.5 of [19]. Transitivity
of Jacquet modules shows that the Jacquet module of τ with respect to the
appropriate parabolic subgroup contains δ([ν

1
2ρ, νaρ]) ⊗ δ([ν

1
2ρ, νaρ]) ⊗ σsp.

Consequently, there is some irreducible constituent δ([ν
1
2ρ, νaρ])⊗π of µ∗(τ)

such that µ∗(π) ≥ δ([ν
1
2ρ, νaρ]) ⊗ σsp. Using the structural formula for

µ∗(δ([ν−aρ, νaρ])oσsp) we get that π is subquotient of δ([ν
1
2ρ, νaρ])oσsp, since

ν
1
2ρ does not appear in the cuspidal support of σsp. It now follows directly

that π has to be the unique irreducible subrepresentation of δ([ν
1
2ρ, νaρ]) o

σsp, which is also strongly positive by Theorem 4.6 of [6].
We have an embedding

σsp ↪→ δ([νaρ, νbρ])o σ′
sp,

where σ′
sp is the unique strongly positive discrete series such that Jord(σ′

sp) =
Jord(σsp) \ {(2b+ 1, ρ)} ∪ {(2d+ 1, ρ)}. Now τ is contained in

δ([νaρ, νbρ])× δ([ν−aρ, νaρ])o σ′
sp.

This implies µ∗(δ([νaρ, νbρ]) × δ([ν−aρ, νaρ]) o σ′
sp) ≥ δ([ν

1
2ρ, νaρ]) ⊗ π and

using Lemma 2.1 two times we obtain δ([νaρ, νbρ])× δ([ν
1
2ρ, νaρ])o σ′

sp ≥ π.
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By Theorem 5.1 (i) of [16], in the appropriate Grothendieck group we
have

δ([ν
1
2ρ, νaρ])o σ′

sp = L(δ([ν
1
2ρ, νaρ])o σ′

sp) + L(δ2 o σ),

and, in the same way as in the proof of Lemma 4.5, we obtain that δ1 o
L(δ2 o σ) contains the strongly positive discrete series π.

• x > a.

Let us denote by σ′ a strongly positive discrete series such that Jord(σ′) =
Jord(σ) \ {(2x + 1, ρ)} ∪ {(2d + 1, ρ)}. Furthermore, we denote by σds the
unique discrete series representation which is a subrepresentation of both
induced representations

δ([ν−dρ, νaρ])o σ.

and
δ([ν−aρ, νxρ])o σ′.

Proposition 4.5 of [10] shows that the generalized principal series δ([νaρ,
νbρ]) o σds contains two discrete series subquotients. We denote by σ′

ds a
discrete series subquotient of δ([νaρ, νbρ])oσds with the property that there

is some irreducible representation π such that µ∗(σ′
ds) ≥ δ([ν

1
2ρ, νaρ]) ⊗ π.

It follows from Proposition 3.4 of [11] that π is the unique strongly positive

discrete series subrepresentation of the induced representation δ([ν
1
2ρ, νxρ])o

σsp, for strongly positive discrete series σsp such that Jord(σsp) = Jord(σ) \
{(2x+ 1, ρ)} ∪ {(2b+ 1, ρ)}. Since σ′

ds is an irreducible subquotient of

δ([νaρ, νbρ])× δ([ν−dρ, νaρ])o σ,

it follows that µ∗(δ([νaρ, νbρ])×δ([ν−dρ, νaρ])oσ) contains δ([ν
1
2ρ, νaρ])⊗π.

Since a > 0 and Jordρ(σ)∩ {2d+1, 2a+1} = ∅, using Lemma 2.1 two times
we get

π ≤ δ([νaρ, νbρ])× δ([ν
1
2ρ, νdρ])o σ.

In the appropriate Grothendieck group we have (by Theorem 5.1 (i) of [16])

δ([ν
1
2ρ, νdρ])o σ = L(δ([ν

1
2ρ, νdρ])o σ) + πsp,

for strongly positive discrete series πsp such that Jord(πsp) = Jord(σ)∪{(2d+
1, ρ)}. Following the same lines as in the proof of Lemma 4.5 we deduce that
δ1oL(δ2oσ) contains the strongly positive discrete series π. This completes
the proof.
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To complete the proof of Theorem 3.4 (iii), we prove

Lemma 6.4. Suppose 2a − 1 ∈ Jordρ(σ). Then the induced representation

δ([νaρ, νbρ]) o L(δ([ν
1
2ρ, νdρ]) o σ) contains an irreducible strongly positive

subquotient if and only if ν
1
2ρ does not appear in the cuspidal support of

σ, 2a − 1 = min(Jordρ(σ)), 2b + 1 ̸∈ Jordρ(σ), d = a − 1 and if there is
2x+ 1 ∈ Jordρ(σ) such that (2x+ 1) = 2a− 1 then b < x.

Proof. Using the cuspidal support argument as before, we deduce that if
2b + 1 ∈ Jordρ(σ) then there are no discrete series subquotients of δ1 o
L(δ2 o σ). Thus, we may assume 2b + 1 ̸∈ Jordρ(σ). If we again denote
by σsp irreducible strongly positive subquotient of δ1 o L(δ2 o σ), it follows
directly that Jord(σsp) = Jord(σ) \ {(2a− 1, ρ)} ∪ {(2d+ 1, ρ), (2b+ 1, ρ)}.

Since ν
1
2ρ appears in the cuspidal support of σsp, for some strongly pos-

itive discrete series σ′
sp we have µ∗(σsp) ≥ δ([ν

1
2ρ, νxminρ]) ⊗ σ′

sp, where xmin

is defined by 2xmin + 1 = min(Jordρ(σsp)). Since ν
1
2ρ does not appear in the

cuspidal support of σ, using Lemma 2.1 we get that if µ∗(δ1×δ2oσ) contains

some irreducible constituent of the form δ([ν
1
2ρ, νyρ])⊗π′, then y ≥ d. Thus,

it follows that xmin equals d, since we have 2d+ 1 ∈ Jordρ(σsp).
Consequently, σ′

sp is an irreducible subquotient of δ([νaρ, νbρ])oσ. Since
a > 1

2
, by Proposition 3.1 (i) of [16] we have [2a + 1, 2b + 1] ∩ Jordρ(σ) = ∅.

Therefore, if there is 2x + 1 ∈ Jordρ(σ) such that (2x + 1) = 2a − 1 then
b < x.

Also, we have µ∗(δ([νaρ, νbρ])oL(δ([ν
1
2ρ, νdρ])oσ)) ≥ δ([ν

1
2ρ, νdρ])⊗σ′

sp.

Again, using a > 1
2
we deduce that µ∗(L(δ([ν

1
2ρ, νdρ])o σ)) contains an irre-

ducible constituent of the form δ([ν
1
2ρ, νdρ])⊗π. It can be easily seen that the

only irreducible constituent of such form which appears in µ∗(δ([ν
1
2ρ, νdρ])o

σ) is δ([ν
1
2ρ, νdρ])⊗σ, which appears there with multiplicity one. Now Frobe-

nius reciprocity and Theorem 5.1 (i) of [16] imply that L(δ([ν
1
2ρ, νdρ]) o σ)

has to be the unique irreducible subrepresentation of δ([ν
1
2ρ, νdρ])oσ, which

is then irreducible and applying the same theorem one more time we deduce
that 2d+ 1 ∈ Jordρ(σ).

Since 2d+1 ∈ Jordρ(σ)∩ Jordρ(σsp), from the description of Jord(σsp) in
terms of Jord(σ) and description of the cuspidal support of strongly pos-
itive discrete series we obtain that d = a − 1. Furthermore, 2d + 1 =
min(Jordρ(σsp)) now also implies 2d + 1 = min(Jordρ(σ)), i.e., 2a − 1 =
min(Jordρ(σ)).
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Conversely, let us assume that ν
1
2ρ does not appear in the cuspidal sup-

port of σ, 2a− 1 = min(Jordρ(σ)), 2b+ 1 ̸∈ Jordρ(σ), d = a− 1 and if there
is 2x+1 ∈ Jordρ(σ) such that (2x+1) = 2a− 1 then b < x. It follows from
Theorem 3.4 of [6] that the induced representation

δ([ν
1
2ρ, νdρ])× δ([νaρ, νbρ])o σ.

contains a unique irreducible subrepresentation, which is strongly positive
(by Theorem 4.6 of [6]) and we will denote it by σsp. Since, by Theorem

5.1 of [16], the induced representation δ([ν
1
2ρ, νdρ]) o σ is irreducible, in

the same way as before we deduce that σsp is an irreducible subquotient of

δ([νaρ, νbρ])o L(δ([ν
1
2ρ, νdρ])o σ), and the lemma is proved.
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[11] I. Matić, On Jacquet modules of discrete series: the first inductive step,
preprint (2015).
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[17] G. Muić, Howe correspondence for discrete series representations; the
case of (Sp(n), O(V )), J. Reine Angew. Math. 567 (2004) 99–150.
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